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of these modes on the pulse broadening would be reduced to
some extent.
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Analysis of the Microstrip and the
Electrooptic Light Modulator

MASANORI KOBAYASHI

Abstract—Green’s function for examples with anisotropic media
is obtained using the image-coefficient method. The method is based
on the boundary conditions and the reciprocity relation. Using this
Green’s function and solving directly the charge distribution on the
strip, the line capacitances per unit length of a microstrip and of an
electrooptic light modulator are obtained. High accuracy of this
method is demonstrated by comparing the present results with the
results obtained using the conformal mapping and with other data
appeared in the literatare. The charge distributions are also il-
lustrated. Of particular interest is the effective filling fraction of the
dielectric material, which depends mainly on the shape ratio and only
slightly on the relative dielectric constant. The effective filling
fractions are tabulated for the microstrip with a homogeneous
dielectric substrate.

LiST OF SYMBOLS

€0 Permittivity of free space (vacuum).
g Permittivity tensor of anisotropic material.
¥, &f Relative dielectric constants of anisotropic

material in the directions of x-axis and
y-axis, respectively.

g* Relative dielectric constant of isotropic
material.
Cle . . . .
el = Ji Effective relative dielectric constant.
C0,/80
e =1 Gheelers effective filling fract
=" 7 eeler’s effective g fraction.
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C Capacitance per unit length of microstrip
or of electrooptic light modulator.

Co Capacitance per unit length of line without
dielectric.

q Line charge.

g Charge distribution on the conductor.

m Number dividing the conductor.

Y Constant of 1, 2, or 3.

N Truncated number of the infinite series in
Green’s function.

/Eﬂf— — et e, . .
K =Y 2l 171 image coefficient.

NCC RN
Electric flux per unit angle emitted from the

source line charge g in the radial direction
with the angle 6 from the x-axis.

ol = 0‘2/0‘1(051 =+ 3*1y/3*1x Oy =/ 5*2y/8*2x~
Z.= /I /&

(g, & & 0)

Intrinsic impedance of the free space
(vacuum).

I. INTRODUCTION

HE CALCULATION of the parameters of a micro-
Tstrip line based on a TEM approximation is useful for
the design of microwave integrated circuit structures
[1]-[8] The parameters can be derived from the line capaci-
tance. The method in [1] is based on modified conformal
mapping. The methods in [2], [3], [S]-[8] use Green’s func-
tion satisfying the boundary conditions. The method in [4]
is based on the relaxation technique. Isotropic substrate
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materials are treated. On the other hand. the single-crystal
sapphire with its well-defined and repeatable anisotropic
properties is an attractive substrate material for microstrip
circuits. Recently, the effect of anisotropy of the sapphire
on the quasi-static characteristics of microstrip lines have
been investigated by the finite difference method [9].

The electrooptic light modulators have received consider-
able attention [10]-[17]. The modulator made of an aniso-
tropic crystal can impress the information onto the laser
beam by means of the electrooptic effect in the crystal. The
impedance and velocity matching which are principal limit-
ing factors of the modulator bandwidth have been studied
[13], [16], [17]. The characteristic impedance and phase
velocity of the modulator can be derived from the line
capacitance. The latter can be calculated by using Green’s
function. Therefore, the phase matching problems of the
modulator are reduced to determining the Green’s function
for the boundary-value problems in the modulator.

Recently, the microstrip analysis based on the variational
technique and Green’s function was applied to the design of
a broad-band electrooptic light modulator with rectangular
side walls [16]. Subsequently, the line capacitance of a
thin-film electrooptic light modulator with parallel-strip
electrodes and with an anisotropic medium was calculated
by the variational technique using Green’s function in the
Fourier-transformed domain [17].

It is the purpose of this paper to propose the method that
has a high accuracy over a wide range of shape ratio of the
strips to any anisotropic substrates and gives an accurate
knowledge of the charge distribution on the strips. The
method has academic interest in the numerical calculation.
The other methods discussed in the literature have produced
good approximations to the line capacitance because
the line capacitance is variationally stationary. Hence, even
relatively large errors in the computed charge distributions
will yield acceptably good values of line capacitance for
practical purposes. The substrip approximations [2],[5] and
the projective method [7] can be expected to find good
charge distribution. However, no method for producing an
accurate charge distribution for any shape ratios and any
dielectric materials containing anisotropic media has ap-
peared in the literature. The Green’s function for the
examples with anisotropic media is determined by using the
method derivable from the boundary conditions and
the validity of the reciprocity relation satisfied by Green’s
function. It is an extension of the image-coefficient method
reported in [2]. Using this Green’s function and solving
directly the charge distribution, we obtain the line capaci-
tances per unit length of a microstrip and an electrooptic
light modulator. These closely computed values are useful
not only for testing simple approximate formulas but also
for checking the accuracy of other available methods ap-
peared in literature. The knowledge of the line capacitance is
employed to calculate the characteristic impedance. The
above results are compared with other available data. The
charge distributions are illustrated in the figures. An accur-
ate knowledge of the charge distribution becomes in-
creasingly necessary [7] in analyzing discontinuity effects

(open circuits, bends, and others). Of particular interest is
the effective filling fraction g, of the dielectric material
proposed by Wheeler [1], which depends mainly on the
shape ratio and only slightly on the relative dielectric
constant. The effective filling fractions are tabulated for the
microstrip with homogencous diclectric substrate.

II. IMAGE-COEFFICIENT METHOD

Consider the two-dimensional space filled with only the
medium of the following permittivity tensor:

e, O
=7 , s, = £¥eq, g, = e*e 1
(0 gy) 0 y y©0 ( )
where ¢f and ¢ are the relative dielectric constants and g, is
the permittivity of vacuum. Green’s function G(x, y; X, ¥o)
in space is defined as a solution of the two-dimensional
inhomogeneous partial differential equation

0*G 0*G d(x — x0)0(y —

8? 2_*_8;: - = — ( 0) (y YO) (2)
0x Jy

€9

Applying the coordinate transformation

8*

x y
X=ﬁ, Y= —— 3)
x y

and the property of delta function

S(mx)y = 8(x)/ |m| 4)
to (2), we get

G %G 1

Sty *mé(x — Xo)5(Y = Yp). (5)

Therefore, we can obtain the solution of (2) by applying (3)
inversely to the solution of (5), that is

G(x, y; x )———1——
,y,«o,yo —280\/@
I —— < (6)
&
JS e

where ¢ is a constant.
Next, consider the case (Fig. 1) of two anisotropic media
of the following permittivity tensors:

_ g1 O
—_ — ok —
&y = > Slx - 81x80, £1y - 83’1‘)180 (7)
0 gy
_ €y O
— — % —
&y = ( 0 B Erx = €3x80, 82y - 83‘),80. (8)
Eay

We can define the Green’s function G(x, y; x¢, yo) for the unit
line charge per unit length g, =1 at the source point
Qo = (X0,Yo) as the solution satisfying the partial differential
equation (2) with boundary conditions at x = 0

Glxzof - Glx=0+ (9)
3 96 _., %6 10
1x ax cco. = 82x ax =04 ( )
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Fig. 1. Image charges of a line charge in the space with two anisotropic

media.

and the reciprocity relation [20, eq. (9)] We obtain the
following results by using the image charges, g, at

Ql = (xl’.VO) and q at Q2 = (x27y0)7 in (6)

q1 €1
2o/ Efv e} e* ’
SINE e RN,
x<0 (11)
c
G= ano\q/osf &% fn E) 22 2
xMay ¥ — —
J B+ 0
9 C;
_+. n s
2meg/ €563 &%
o/ ehect, /;Ti(x—h)“r(y—y())z
0<x (12)
where
ci=c,=1 (13)
_ ek &
X, = RV Xo (14)
Xy = —Xo (15)
= (1 - K)go (16)
4> = Kqo (17)
\/82x82y flxgly (18)

\/2x32y + \/31x51y

Next, consider the two-dimensional space filled with only
the medium of permittivity tensor & given by (1). The
potential ¢ at an arbitrary point r = (x,y) for the line charge
qo at the source point ry = (x4, ) can be expressed from (6)

and (13) as fOllOWS'
¢= 2me \/8*8* s 1 . (19)
° /zu—m) (= 3o
The electric flux density D is expressed as follows:
=& (-V9)
_ 40\/@"—8?{(76 — Xo)i + (¥ = yo)j} (20)

T 2mfeE(y — yo)® + £X(x — x0)%
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Therefore, we find that the source charge emits the electric
flux in the radial direction from (20), and the equipotential
lines become the ellipses from (19), as illustrated in Fig, 2.
Let the electric flux per unit angle emitted from the source
charge in the radial direction with the angle (< =/2) from
the x-axis be denoted by ¥(q,, ¥, &f, 0), so that

Yldo, e, &f, 0) = |r —ro| | D]

[ pkak
. qO gx'gy

—_—— 21
2n ¢¥ sin® 0 + ¢&f cos” 0 1)

Using this electric flux, the vectors, D and E, can be
expressed as follows:

D= l//(qo, E;k, 8;‘, 9)

E=z1'-D

"o (22)

|r— 70|2
(23)

Now, the Green’s function for the case with the unit line
charge at the point @, as illustrated in Fig, 1 can be also
obtained by the image-coefficient method shown below by
illustrating the refraction and reflection of the flux (1, e%,,
e%,, 0,) as shown in Fig. 3. At the interface, the y-axis, the
fraction Ki/(1, e3,, €%,, 0,) of the flux ys(1,¢%,, 63, 0,) emitted
from the source point Q, reflects and goes as emitted from
the image point Q,, and the remainder (1 — K (1, e%,, &%,
6, ) refracts and goes as emitted from the image point @ ;. The
boundary conditions at an arbitrary point B on the interface
become as follows by using (22) and (23) from the require-
ments of continuity of the normal electric flux density
component D, and the tangential electric field component
E .

T

(1- cos 0,

K)lﬁ(l, BTx’ glya 0 )

W(l 8Zx’ 82}” 02)

cos 6,

Teg,

TBgo
- Kl//(lv Eigx’ 8)21‘y> 02)
~cos 0, (24)
Y8,

sin 6, 1
Al//(l 82x’ 82y5 92)

£y

1-K
lﬁ(la sTx’ ST},, 91)
&1y o,

sin 6,

'Bg,

K
+ ‘l//(l’ g:gx’ 8§y7 92)

82y

sin 0,

(25)

Ypo,

where rg, denotes the distance between the points B and Q.
The boundary conditions (24) and (25) are satisfied by

rgo, €OS 0; = | le / —;UBQO cos 0, (26)
1y X
\/82x62y \/81x£1y (27)

\/82x82y + \/51x81y
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Fig. 5. Electrooptic light modulator line.

o

Fig. 2. Electric flux and equipotential line for a line charge in the aniso-
tropic medium.

Then, we find that (26) and (27) are identical to (14)-(18).
Ly Therefore, the Green’s function can be obtained as (11) and
-KPAEEE) | KPOEEne) (12) by using the image charges, (1 — K)at the point Q ,,and
NG K at the point Q,.

£, III. GREEN’S FUNCTION

The parameters, a characteristic impedance Z, a phase
velocity v, and a guide wavelength 4, for the microstrip (Fig.
4) and for the electrooptic light modulator (Fig. 5) can be
obtained from the line capacitance C between the conduc-

tors as, follows:
Z= 1/(”0\/670) (28)
v= Uom (29)
| & A= Ao/ CoC (30)

Fig. 3. Refraction and refiection of the flux (1, €%, ¢3,, 6,) emitted from
a unit line charge in the space with anisotropic media.

¥
5 where v, denotes the velocity of light, 4, the free space
L wavelength, and C, the line capacitance for the case of
_; x €1 = &, = vacuum. As the line capacitance can be calculated
2
+

L polE ]

T2lq by using the Green’s function, the problem is that we
' determine the Green’s function. The Green’s function for
both the microstrip and the electrooptic light modulator can

(a) be determined as follows by illustrating the refraction and
Fig. 4. Microstrip line. (a) Microstrip line. (b) Electrostatically equiv-  reflection of the electric flux emitted from the unit line

alent-2 ribbon line. charge at the source point (h +d, y,) using the image-
coefficient method as shown in Fig. 6:
1-K* & !
G(x, y; h +d, yo) = e ok ok 2, K*In h 2 o vEh G
meo /2523, n=0 o3 x—{d+;(2(2n+l)~a” + (v = yo)
1-K 2 1
Gx, y; h+d, yo) = ———F——= K*" In
(x, y Yo) dite /Pt n;) { Voilx = {@n + Dh + oad)]* + (v — yo
1
_K¥lyp }, —h<x<h 32
\/a%[x +{(@n+ 3 +aud}] + (y — yo)* )
1 1 !
G(x, y; h+d, yo) = [ln +Kin
(x, v o) 2meon/e%ees, | odlx — (h+ A + (y — yo)? Vosle = (= d)* + i = o)’
1

_ 2 K2n+1(1 . K)Z ln

n=0 \/oc% 1x +

> , h<x (33)
2+ )= )|+ 6o
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* *

— / 1x81y

\/7* *
E1xe1y
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Q

1
Q [ K
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IV. CAPACITANCE FOR MICROSTRIP

The line capacitance per unit length C of the microstrip
shown in Fig. 4(a) can be calculated as below if the charge
quantity ¢ on the conductor in quadrant I can be obtained.
Let us consider only quadrant I, due to symmetry, as the
region for the boundary-value problem. Now, we can con-
sider the image charges, —g, — g, and g, in quadrants II, III,
and IV, respectively, as those of the line charge g at the
source point (h,y,) in the quadrant I as shown in Fig. 4(b).
Then, the value of the Green’s function at the point (h,y) on
the conductor in quadrant I for g = 1 is determined as
follows by the use of (31) and (33) for the electrostatically
equivalent-2 ribbon line (Fig. 4(b)):

1 o)
2meo(y/ el el + /€1 8%,) n;

G(h, y; b, yo) = K1

Here, let us express the desired unknown charge distribution
o(h,y,) on the conductor in quadrant I as shownin Fig. 7,s0
that the potential V at the point (h,y) on the conductor is
expressed by the Green’s function technique [20, eq. (20)] as
follows:

m

Yi+1
V=Y ( a(h, yo)G(h, y; h, yo) dyo  (35)
j=1"'y
o(h, yo)=0;+ (0,41 = 7)) o (36)
Yi+1 — Yj

In
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0,1

0

Fig. 7. Desired unknown charge distribution on the conductor in quad-
rant I for the microstrip.

where we take that

w i—1 .
-0 -

in order to make a(h,y,) approach the true charge distribu-
tion, where y is a constant of 1, 2, or 3. The potential V; at
each point (h,y,) (k =1, 2.+, m + 1) on the conductor is
expressed as follows by carrying out the integration of (35)
and rearranging those results:

~,m+1 (37)

m+1

Vi= Z Prj0js
=1

Solving the simultaneous equations (38) by letting ¥, be the
given potential of the conductor, V,, we obtain o giving the
desired unknown quantity a(h,y,). As the charge quantity Q
on the conductor can be calculated by

0-7% |

j=1"y;

k=12, m+ 1L (38)

y1+1

»)’0 dyO (39)

we obtain the line capacitance C of the microstrip as follows:

e (40)

e () o+ (|

N s ) e sl

The infinite series in (34) converge quickly; the detailed
discussion on the convergence is shown by Silvester [2] for
€1, = €1, = & and &,, = &,, = &. In this paper, we take that
e3, = ef, = 1. Table I shows the numerical results of the line
capacitance Cg /g, for £, = €%, = 1 and the effective filling
fraction g,,for ¢%, = %, = ¢1. We took m = 40 as the divided
number in (35), (38), and (39), N = 50 as the truncated
number of the infinite series (34), and y = 3 in (37). We took
N =1, 100, 600 for e¥ = 1, 16, 128, respectively. It is checked
with the larger divided number m that the results are greater

(34)
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TABLE 1
LiNg CAPACITANCE PER UNIT LENGTH Cy/¢; AND EFFECTIVE
FILLING FRACTION ¢, OF MiCROSTRIP
WITH ISOTROPIC SUBSTRATE

6; Co/so Effective filling fraction q
w/R 1 1.01 1.5 2 & 8 16 128
01| 0 939969 | 0.551680 | 0 SHTHA7 | 0588902 | 0.5H07E0 | 3.538650% | 0.537ULLF | 15368007
0.04] 118587 | 0 55312 | 0 5A0106 | 0 BRTISL | 0,552236 | 0.549502 | 0.547960 | 0 S46T71*
010} 1.43375 |} 0 578900 [0 573016 | 0 569632 | 0.563975 | 0.560825 | 0 559150 |0 5576u1%
0,20] 1.70270 || 0.593607 | N.587092 | 0.5R3321 | 0.57A983 | 0.573U37 | 0.571548 | 0.569699
0 40| 2.09393 0.61U680 | 0 607485 | 0.60329% | 0.596207 | 6.592215 | 0.590082 | 0.587837
0 70| 2.5636% § 0.638970 | 0.631299 | 0.626811 | 0 610174 [0 61LBYS |0 612523 | 0.610393
1.00| 2.97991 | 0.650004 | n.65126a | 0.6URGRR | 0 38808 | 0.634334 |0 631929 | 0.629708
2.00] U.23188 { 0.710000 | 0.702537 | 0.698071 { 0.490398 | 0.ARA00L | 0.68363 | n.681456
B0nl 6.50698 | 0,772584 {0 7R6173 | 0.762402 | 0755013 | 0 752192 |0 750183 | 0.748329
7.00[ 9.7968% [ © 823842 |n.818821 [0 B15854 | 0 10758 | 0.807840 | 0.806266 |0.804816
10.00] 12 9814 0.8549113 [ n.849977 { 0.847538 | 0843356 | 0 BUO967 |0.830679 | 0.838494
20,00} 23.3628 0.903768 |0 901149 | 0 899611 | 0.896985 | 0 895491 | 0 894687 | 0.893950
40 00| 43 7668 0.939854 |0.93R327 | 0.937433 | 0.935914 | 0.935054 | 0.934501 | 0 93416R
100.00[104,323 0.969596 | 0.9A%309 | 0 9RBOB2 | 0.967830 | 0.967447 | 0.967242 |0 967055
Etx = E;y = e}, EEX = c;y =1, m= 40, N=50(N =1, 100, 600 for
e =1, 1A, 128, respectivelv), y = 3(y = 1 for # and y = 2 for ¥*),
q, = (t;ff-l)/(a;—l), et = (Cle )/ (Cpre)d

than the true values. Comparing these results with the true
values C, /e, obtained by the author using the conformal
mapping [18], [19], shown in Table A-I, we find that the
errors of the results C /g, are less than +0.0024 percent for
w/h = 0.01 and less than +0.001 percent for w/h > 0.01. The
order of errors of C/g, for ef = 1isthesametothat of Cy /g,
if we take N as follows:"

(41)

N-1 1
K n(N_1

4

) < 107°,
The g,, is determined by Wheeler [1] and can be obtained

from C/e, as follows:

e 1

gy = f;,?j ) etie = (C/eo)/(Co/eo) (42)
Therefore, g, shown in Table I, are possible to a sur-
prisingly high accuracy as the order of errors of C/g, is the
same tothat of C, /g,. We find that the g,,depends mainly on
the shape ratio w/h and only slightly on the relative dielectric
constant ¢ from Table I. If we draw g, versus (1 — 1/¢%), we
find that g,, changes almost linearly, the largest slope is for
w/h = about 12. The g, approaches 0.5 and its slope
approaches zero when w/h — 0. The g,, approaches 1 and its
slope approaches zero when w/h — co. Fig. 8 shows ¢, for
w/h = 0.01, 1, 100.

Table II shows the numerical results of C/e, of the
microstrips with sapphire substrate of anisotropic property.
In Table I11, the ratios Z/Z of the characteristic impedance
Z of the microstrip to the intrinsic impedance Z, of the free
space (method A) are compared with those calculated by the
author using Wheeler’s formulas [1] (method B). We cal-
culated the Z/Z_of method A by using the results C,, /e, and
q,, in Table I as follows:

7/Z, = ———

0

0

e = 1+ q,(ef — 1) (43)

3k
Eerr

1.00
oss}

097} wh=i00 |

098
=
o
066
el -1

0.64-

063

062

) 1.0
Fig. 8. Effective filling fraction of the microstrip.

0505 + (ii

TABLE 11
LINE CAPACITANCE PER UNIT LENGTH C/¢, OF MICROSTRIP
WITH SAPPHIRE SUBSTRATE

e¥ |e*
ix: 1y
w/h 9.4 11.6111.6}9.4
0.1 8. 78424 9.25962
1.0 19.6889 22.0162
10.0 105.506 127.428
e§x=e;y=1, m=40,
N=50, vy=3
TABLE 111

RATIO Z/Z, OF CHARACTERISTIC IMPEDANCE OF MICROSTRIP
TO INTRINSIC IMPEDANCE OF FREE SPACE

S
w/h 1 4 16 128
A 1.06386 0.656979 | 0.353413 | 0.127913
00l ip{1.06388 |0.657402 |0.353671 | 0.1280k6
A | 0.335580 0.196503 0.103666 0.0372929
10005 0335026 | 0.196998 | 0.103982 | 0.0374042
A} 0.,153210 0.0847546 | 0.0437694 | 0.0156338
4001 5| 0.15%007 | 0.0844588 | 0.0434946 | 0.0155101
A | 0.00958559 | 0.00485168 | 0.00243406 | 0.000861L51
190-904 51 4.00958690 | 000485178 | 0.00243397 | 0.0006861397
Method A: the method of this paper
Method B: the modified conformal mapping(1]

The ratios Z/Z, are larger than the true values and the order
of its errors is the same to that of C/e,. Comparing both
methods, method B has a high accuracy for extremely wide
and narrow strips as having been mentioned by Wheeler [1]
and has a good accuracy for the intermediate strips. Method
A has a high accuracy as mentioned above. Its reason is that
the charge distributions can be obtained remarkably well.
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Fig. 9. Charge distributions obtaimned for the microstrip.

As an example, we show in Fig. 9 the charge distributions
for sapphire substrates and for vacuum.

V. CAPACITANCE FOR FLECTROOPTIC LIGHT MODULATOR

The line capacitance per unit length of the electrooptic
light modulator (Fig. 5) can be calculated by a method
similar to that for the microstrip. The value of the Green’s
function, used then, at the point (h,y) on the conductor in the
upper half region is expressed as follows:

1 fvel
2meo(/e8. %, + NGEEN| ngl
2

an— 1) + (y”")

o h
Y= vo\*
4n— 17 + (—ah—‘))
1

Also, we express the desired unknown charge distribution
o(h,y,) on the conductor as follows:

G(h’ y’ h’ yo) = Kn—-l

- In

(44)

J(h’YO)=Gj+(O-j+1_Uj)M (45)
Vi+1 — )
where we take that
wy wj s+ 1—j
jdl TG T I TR A2
(W0+2) 2l1 ( S )V},

I

Y;

m
| = 2. = -
< j=1.2, ,s(s 2)
w w s+1—j
(W0+5)+2<1— (1+ s )V:,

j=s+1L,s+2,-,m+1

(46)
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TABLE IV
LiNE CAPACITANCE PER UNIT LENGTH OF ELECTROOPTIC LIGHT
MopuLaTor wWitTH LiINbO, AND WITHOUT

e¥ 2 20 50 100 200 400

(@]

3.30662
D| 3.30586

1.95071
1.95060

1.50681
1.50675

1.23317
1.23313

1.01637
1.01635

0.850136
0.850121

€159.0312 | 34.8300 |26.9107 |22.0372 |18.1928 |15.2915

2h=2[um], w=44[um], s§x=e§y=1, m=40,

N=50 (N=1 for e*_ =¢* =1)
1x ly

the method of this paper

s Y=3,
Method C.

Method D: the conformal mapping

in order to make a(h,y,) approach the true charge distribu-
tion, where y is a constant of 1, 2, or 3.

Table IV shows the numerical results of the line capaci-
tances per unit length C/e, and C, /e, of the electrooptic
light modulator lines with LINbO ; (%, = 43, &%, = 28) and
without. In Table IV, method C is that of this paper and
method D is that of the conformal mapping. Here, we take
that 2h = 2 mm, w = 44 um, and &%, = ¢§, = 1. Itis checked
with the larger m that the results obtained by method C are
greater than the true values. Comparing the results with the
true values obtained by method D, we find that the errors of
method C for ¢%, = %, = 1 are less than +0.023 percent for
2 pm < 2wy <400 um. The order of errors of Cley for
LiNbO; is the same to that of C, /¢, if we take N as follows:

LY 2(w + wo) 2
K¥ 'l e { U } <107 (47)
AN 17 '

Yamashita and Atsuki [17] calculated C by the variational
technique using Green's function. Comparing their results
with our resultsin Table IV, forw = 44 um, we find that their
results are smaller by 4 ~ 10 percent.

Method C has a high accuracy because the charge
distributions can be obtained remarkably well as shown, for
example, in Fig. 10. Although not shown here, it is worth
pointing out that the charge distributions for ¢%, = &%, = 1
are nearly in agreement with and slightly less than those for
&%, = 43 and ¥, = 28 if both results are drawn by the same
scales to those of Fig. 10. It means that the effective relative
dielectric constant of the electrooptic light modulator with

LiNbO; is about (1 + \/ef, ¥, )/2 (=17.849).
¥

VI. CONCLUSION

The Green’s function for the examples with anisotropic
media has been obtained using the image-coefficient method
based on the boundary conditions and the reciprocity
relation. Using this Green’s function, the line capacitances
per unit length of a microstrip and an electrooptic light
modulator have been calculated with the aid of the digital
computer, HITAC 8250 and HITAC 8800/8700. In order to
demonstrate the high accuracy of the present method, the
numerical results have been compared with the true values
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Fig. 10. Charge distributions obtained for the electrooptic light
modulator.
TABLE A-1

TrRUE LINE CAPACITANCE PER UNIT LENGTH OF MICROSTRIP
WITHOUT SUBSTRATE

w/h |, /ey | w/n|cy e fwnlcy /e
0,011 0,039947 [ 0.1 [1.43375 1] 2.97989
0.02 | 1.04869 0.2 1 1.70270 2| 4.23155
0.03 | 1.12480 0.3]1.91198 31 5.39883
0.04]1.18587 || 0.4 2.09392 4| 6.52694
0.05 | 1.23800 0.5 | 2.25993 51 7.6314
0,06 | 1.28412 0.6 | 2.41548 61 8.71990
0.07 | 1.32588 0.7 | 2.56364 71 9.79678
0.08 | 1.36431 0.8]2.70633 8 110.8648
0.09 | 1.40010 0.9 | 2.84479 9 [11.9259

10 112.9813
computed by the author using
conformal mapping[18],[19]

obtained by conformal mapping and with other results
published in literature and the charge distributions have
been illustrated in the figures. The effective filling fractions
have been tabulated.

Further work is in progress to calculate the parameters of
the structures with the conductors of finite thickness and to
propose the closely approximate formulas of C/ey to be
useful in the design of a microstrip and of an electrooptic
light modulator.

APPENDIX

The line capacitance C, /e, per unit length of the micro-
strip can be found analytically by conformal mapping [18],
[19], and the results calculated by the author are shown in
Table A-I.
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