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of these lmodes on the pulse broadening would be reduced to

some extent.
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Analysis of the Microstrip and the
Electrooptic Light Modulator

MASANORI KOBAYASHI

A bstruct—Greenk function for examples with an isotropic media

is obtained using the image-coefficient method. The method is based
on the boundary conditions and the reciprocity relation. Using this
Green’s function and solving directly the charge distribution on the

strip, the line capacitances per unit length of a microstrip and of an
electrooptiic light modulator are obtained. High accuracy of this
method is demonstrated by comparing the present results with the
results obf ained using the conformal mapping and with other data

appeared in the literature. The charge distributions are also il-
lustrated. (Df particular interest is the effective filling fraction of the

dielectric material, which depends mainly on the shape ratio and only

slightly on the relative dielectric constant. The effective filling

fractions :are tabulated for the microstrip with a homogeneous

dielectric substrate.

LIST OF SYMBOLS

&~ Permittivity of free space (vacuum).

c Permittivity tensor of anisotropic material.

6.:, 6; Relative dielectric constants of anisotropic

material in the directions of x-axis and

y-axis, respectively.

E% Relative dielectric constant of isotropic

material.

c

q
fJ

??1

Y

N

Capacitance per unit length of microstrip

or of electrooptic light modulator.

Capacitance per unit length of line without

dielectric.

Line charge.

Charge distribution on the conductor.

Number dividing the conductor.

Constant of 1, 2, or 3.

Truncated number of the infinite series in

Green’s function.
——
i * * - Jqxqy image coefficient

‘;z+~=
Electric flux per unit angle emitted from tlhe

source line charge q in the radial direction

with the angle 6 from the x-axis.

—— ct/Lxl(al = ~E*ly/8*lx ~2 ‘= 4E”2YI%

Intrinsic impedance of the free space

(vacuum).

c/Eo
I. INTRODUCTION

Effective relative dielectric constant.&ff = ~,~ T HE CALCULATION of the parameters of a micro-

strip line based on a TEM approximation is useful for

E:ff – 1
q. = ~~ Wheeler’s effective filling fraction.

the design of microwave integrated circuit structures

[1]-[8]. The parameters can be derived from the line capaci-

tance. The method in [11 is based on modified conformal. .
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mapping. The methods in [2], [3], [5]–[8] use Green’s func-

The author IS with the Department of Electrical Engmeermg, Faculty of
tion satisfying the boundary conditions. The method in [4]

Engineering, Ibamki University, Hltachl. Ibarakl, 316 Japan. is based on the relaxation technique. Isotropic substrate

0018-9480/78/0200-01 19$00.75 ~ 1978 IEEE



120 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES> VOL. NITT-26, NO. ~, FEBRUARY 1978

materials are treated. On the other hand. the single-crystal

sapphire with its well-defined and repeatable anisotropic

properties is an attractive substrate material for microstrip

circuits. Recently, the effect of anisotropy of the sapphire

on the quasi-static characteristics of microstrip lines have

been investigated by the finite difference method [9].

The electrooptic light modulators have received consider-

able attention [10]–[17]. The modulator made of an aniso-

tropic crystal can impress the information onto the laser

beam by means of the electrooptic effect in the crystal. The

impedance and velocity matching which are principal limit-

ing factors of the modulator bandwidth have been studied

[13], [16], [17]. The characteristic impedance and phase

velocity of the modulator can be derived from the line

capacitance. The latter can be calculated by using Green’s

function. Therefore, the phase matching problems of the

modulator are reduced to determining the Green’s function

for the boundary-value problems in the modulator.

Recently, the microstrip analysis based on the variational

technique and Green’s function was applied to the design of

a broad-band electrooptic light modulator with rectangular

side walls [16]. Subsequently, the line capacitance of a

thin-film electrooptic light modulator with parallel-strip

electrodes and with an anisotropic medium was calculated

by the variational technique using Green’s function in the

Fourier-transformed domain [17].

It is the purpose of this paper to propose the method that

has a high accuracy over a wide range of shape ratio of the

strips to any anisotropic substrates and gives an accurate

knowledge of the charge distribution on the strips. The

method has academic interest in the numerical calculation.

The other methods discussed in the literature have produced

good approximations to the line capacitance because

the line capacitance is variationally stationary. Hence, even

relatively large errors in the computed charge distributions

will yield acceptably good values of line capacitance for

practical purposes. The substrip approximations [2], [5] and

the projective method [7] can be expected to find good

charge distribution. However, no method for producing an

accurate charge distribution for any shape ratios and any

dielectric materials containing anisotropic media has ap-

peared in the literature. The Green’s function for the

examples with anisotropic media is determined by using the

method derivable from the boundary conditions and

the validity of the reciprocity relation satisfied by Green’s
function. It is an extension of the image-coefficient method

reported in [2]. Using this Green’s function and solving

directly the charge distribution, we obtain the line capaci-

tances per unit length of a microstrip and an electrooptic

light modulator. These closely computed values are useful

not only for testing simple approximate formulas but also

for checking the accuracy of other available methods ap-

peared in literature. The knowledge of the line capacitance is

employed to calculate the characteristic impedance. The

above results are compared with other available data. The

charge distributions are illustrated in the figures. An accur-

ate knowledge of the charge distribution becomes in-

creasingly necessary [7] in analyzing discontinuity effects

(open circuits, bends, and others). Of particular interest is

the effective filling fraction qW of the dielectric material

proposed by Wheeler [1], which depends mainly on the

shape ratio and only slightly on the relative dielectric

constant. The effective filling fractions are tabulated for the

microstrip with homogeneous dielectric substrate.

II. IMAGE-COEFFICIENT METHOD

Consider the two-dimensional space filled with only the

medium of the following permittivit y tensor:

(i&x O~=
o&y’

Ex = E:&O, Ey = E;&. (1)

where .s~and e; are the relative dielectric constants and COis

the permittivity of vacuum. Green’s function G(x, y; XO, yO)

in space is defined as a solution of the two-dimensional

inhomogeneous partial differential equation

~e i32G * i32G 6(X – Xo)ii(y – y,)

‘ ax2+&’’dy2=–
(2)

80

Applying the coordinate transformation

‘“k’ ‘=vi
and the property of delta function

a(?nx) = a(x)/lrn

to (2), we get

i32G 132G 1

dxz+ ayz’ ‘Corn
6(X – x,

(3)

(4)

)6(Y - Y,). (5)

Therefore, we can obtain the solution of (2) by applying (3)

inversely to the solution of (5), that is

1
G(x> y; .xO, yO) =

2 &om

“73=$==‘6
where c is a constant.

Next, consider the case (Fig. 1) of two anisotropic media

of the following permittivity tensors:

()&~x o
Elx = &;X&O, EIY = E~y&o=1= o ~ly> (7)

()

E2x o~2= &2X= &;X&O,E2Y= E;Y&O.
o &2y‘ (8)

We can define the Green’s function G(x, y; Xo, yo) for the unit

line charge per unit length q. = 1 at the source point

QO = (xO,YO) as the solution satisfying the partial differential
equation (2) with boundary conditions at x = O

Glx=o _ = Glx=o+ (9)

aG aG

‘lX%~=~_=‘2’%,=()+

(lo)
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Fig. 1, Imnge charges of a line charge in the space with two anisotropic
media.

and the reciprocity y relation [20, eq. (9)]. We obtain the

following results by using the image charges, q ~ at

QI = (XI,.YO) and q, at Q, = (x,,y,), in (6):

1-‘“’x’yw===G = 2rGEO~=

-t ‘2 In
2z&~ ~=

-’

\
where

o s x (12)

(13)

(14)

x’ = —Xo (15)

qI = (1 – K)qo (16)

qz = Kqo (17)

(18)

Next, consider the two-dimensional space filled with only

the medium of permittivity tensor ~ given by (1). The

potential (j at an arbitrary point r = (x,y) for the line charge

q. at the source point r. = (Xo,yo) can be expressed from (6)

and (13 ) :1S follows:

#=– ~o ~ 1

2n&o m

1
~ (x - Xo)’ + (y - ye)’

. (19)

The electric flux density D is expressed as follows:

D=F (–V(j)

= qom{(x–XO)~+(y– yO)..j}
27c{&:(y – y.)’ + &:(x – x.)’] “

(20)

Therefore, we find that the source charge emits the electric

flux in the radial direction from (20), and the equipotential

lines become the ellipses from (19), as illustrated in Fig. 2.

Let the electric flux per unit angle emitted from the source

charge in the radial direction with the angle 6(< 7c/2) from

the x-axis be denoted by ~(qo, c:, .$!, f3), so that

_ qo m—
2Z e: sin2 f3 + .5? COS2O”

(21)

Using this electric flux, the vectors, D and E, can be

expressed as follows:

D = Wqo> E;, E;> ~)
r—r.

lr-rol’
(22)

E= F- ’D. (23)

Now, the Green’s function for the case with the unit line

charge at the point Q. as illustrated in Fig. 1 can be also

obtained by the image-coefficient method shown below by

illustrating the refraction and reflection of the flux *(1, E~X,

E~Y,02) as shown in Fig. 3. At the interface, the y-axis, the

fraction Ktj(l, cIX, &zy,* 02) of the flux 4(1,63X, E~y,f32)emitted

from the source point Q. reflects and goes as emitted from

the image point Q2, and the remainder (1 – K)~(l, E~X,E~Y,

01) refracts and goes as emitted from the image point Q ~.The

boundary conditions at an arbitrary point B on the interface

become as follows by using (22) and (23) from the require-

ments of continuity of the normal electric flux density

component Dn and the tangential electric field component
Et:

(1 – ~)+(1, E~x, Efy, d,)%= $(1, E;x, &;y, 62)

Cos (IZ

‘BQo

— Klj(l, Eyx, &jy, e’)

Cos 02
(24)

‘BQZ

sin 92

‘BQo

sin f12. (25)
‘BQZ

where rBQ denotes the distance between the points B and Q.
The boundary conditions (24) and (25) are satisfied by

CT

E;x E;y

rBQ1 c@i (j~ = ~ ~ r~QO Cos ~’ (26)
&ly Ezx

K=dm-4ixTY
J=z+m”

(27)
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Fig. 2, Electric flux and equipotential line for a line charge in the aniso-

tropic medium.
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Fig. 3. Refraction and reflection of the flux +(1, E~x, &jy, 02) emitted from

a unit line charge in the space with anisotropic media.
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Fig. 4, Microstrip line. (a) Microstrip line. (b) Electrostatically equiv-

alent-2 ribbon line.
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Fig. 5. Electrooptic light modulator tine.

Then, we find that (26) and (27) are identical to (14)-(18).

Therefore, the Green’s function can be obtainedas(11) and

(12) by using the image charges, (1 – K) at the point Q,, and

K at the point Q2.

III. GREEN’S FUNCTION

The parameters, a characteristic impedance Z, a phase

velocity U,and a guide wavelength 2, for the microstrip (Fig.

4) and for the electrooptic light modulator (Fig. 5) can be

obtained from the line capacitance C between the conduc-

tors as, follows:

z = l/(rJo@) (28)

V=vom (29)

A=Lom (30)

where UO denotes the velocity of light, 10 the free space

wavelength, and Co the line capacitance for the case of

SI = SZ = vacuum. As the line capacitance can be calculated

by using the Green’s function, the problem is that we

determine the Green’s function. The Green’s function for

both the microstrip and the electrooptic light modulator can

be determined as follows by illustrating the refraction and

reflection of the electric flux emitted from the unit line

charge at the source point (h + d, yO) using the image-

coefficient method as shown in Fig. 6:

l-K’ fK~”~n 1
G(A y; h + d, yo) =

2n&o J~ ..1)

.{

x<–h (31)

LX; x– d+~(2(2n+1)–a
1:

2

+ (y – ye)’

G(x> y; h + d, yo) =
I–K w

Z[ K2” in
1

21tEo 4= . co ct~[x – {(4n + l)h -t ctd}]z + (y – yo)2

K2tl+1 In
1—

1
–h<x<h

u~[x + {(4n + 3)h + ad}]’ + (y – yo)z ‘

G(.x, y; h + d, yo) =
1

[J
In

1 1

2TCE0~~
+Kln

IX;{X – (h -t- d)}2 + (y – yo)2 rX;{X – (h – d)}’ + (y – yo)2

(32)

- ~ K’”+’(l - K)z in
1

.(

1 h<x (33)

a; x+ d+~(4(n+l)–et)
}

2
~=()

+ (y – ye)’
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IV, CAPACITANCE FOR MICROSTRIP

The line capacitance per unit length C of the microstrip

shown in Fig. 4(a) can be calculated as below if the charge

quantity Q on the conductor in quadrant I can be obtained.

Let us consider only quadrant I, due to symmetry, as the

region for the boundary-value problem. Now, we can con-

sider the image charges, – q, – q, and q, in quadrants II, III,

and IV, respectively, as those of the line charge q at the

source po~nt (h,Yo) in the quadrant I as shown in Fig. 4(b).

Then, the value of the Green’s function at the point (h,y) on

the conductor in quadrant I for q = 1 is determined as

follows by the use of (31) and (33) for the electrostatically

equivalent-2 ribbon line (Fig. 4(b)):

Fig. 7. Desired unknown charge distribution on the conductor in quad-

rant I for the microstrip,

where we take that

in order to make a(h,yO ) approach the true charge distribu-

tion, where y is a constant of 1, 2, or 3. The potential 1“~at

each point (h,yJ (k = 1, 2. ~~~, m + 1) on the conductor is

expressed as follows by carrying out the integration of (35)

and rearranging those results:

m+l

Vk = ~ Pkj”j, k=l,2,’””, m+l. (38)
j=l

Solving the simultaneous equations (38) by letting V~be the

given potential of the conductor, VO,we obtain aj giving the

desired unknown quantity a(h,yo). As the charge quantity Q

on the conductor can be calculated by

we obtain the line capacitance C of the microstrip as follows:

~=2Q

Vo ‘
(40)

1
G(1I, y; h, yo) =

[4”2+(’=)21[4”’+ (133121

i ‘n-1’1nl(”-1)2+ (Y)21P(n-1)2+(%T” ’34)

2n&o(J- + J=) ..1

Here, let us express the desired unknown charge distribution

cr(h,yo) on the conductor in quadrant I as shown in Fig, 7, so

that the potential V at the point (lz,y) on the conductor is

expressed by the Green’s function technique [20, eq. (20)] as

follows :

v= f (y’+’o(h, yo)G(h, y; h, Yo)dyo (35)
j=l ‘y,

YO – Yj
CT(I’I,J’o)= Uj + (~j+l - aj)

Yj+l – Yj
(36)

The infinite series in (34) converge quickly; the detailed

discussion on the convergence is shown by Silvester [2] for
EIX = &l’ = El ande2X = eJY= Eo. In this paper, we take that

* — 1 Table I shows the numerical resuks of the lineE;x = E2Y — .

capacitance Co/80 for cl, = EIY = 1 anctthe effective filling

fraction qWfor c:.= &~Y= &?.We took m = 40 a.sthe divided
number in (35), (38), and (39), N = 50 as the truncated

number of the infinite series (34), and y = 3 in (37). We took

N = 1, 100,600 for ET = 1,16,128, respectively, It is checked

with the larger divided number m that the results are greater
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TABLE 1
LINE CAPACITANCE PER UNIT LENGTH C“ le. AND EFFECTIVE

I
co/co.1

w/tl 1

001 0 q39969
O,(I4 1 1R~87

0 10 1,03375

r,, ?0 1.70270

,1 Uo 2.09393
070 2,56365
1.00 2.97901

2.00 4,27158

4,00 6, 5?698

7.00 9.79[86

10,00 12 9814

20,00 23.3628

40 00 43 7668

LOO,00 1(74, 323

FILLING FRACTION qW OF klI;RO;TRIP

WITH ISOTROPIC SUBSTRATE

1,01

0.551680

0 565312

0 .wmoo

0,593607

0.614680

0, 6389(0

o, 6590qU

0.7100q0

0,1725ti4

O 823842

0.854113

(7.903768

0, Qy&34

0.96Q596

Efrect>”e c,ll I.P f,action qv

1.5 ? 4 8 16

n 5117%7 o,5u9n2 0,540740 0.53862Q* 0.537U41*

O 5FO1O6 n 557151 n,552236 0, 54950? 0.547960

0 573016 0 569632 0.563975 0.560825 0 559150

n.5870q2 0.583321 o.57f,9133 o.573 &37 0.571548

0 607W5 0.603295 0,59f207 0,592215 0.590082

0. 63129q 0.626811 0 61~17b o 61U845 o 612523

0.65126. 0.646668 0 638808 0.634334 0631929

0.702537 0.$+8071 0,690398 0, 6%004 0,6 R363U

o 766173 0.7c2u02 0.755CJ13 0 752192 0 750183

n,mmzl n 815954 0 810758 0.807840 0.806266

CI,849C277 0.847538 0,843356 0 W0967 0.83? 679

O 9011U9 0 899511 0.896985 0 895491 0 894687

n q3R327 0,.37433 0,935914 0.?35054 0.934591

0,48909 0 968082 0.967830 0.967U47 0.9672W

128

rI. -336i300h

o 546771,

0 5576411

0.569699

0.587837

0.6103q3

0.629708

n.681JJ56

0.748329

0.804816

0.838w

0,893950

0 93U16R

0967055

‘:x = C:Y= ‘:, CSx = %
= 1, m = 40, )1 = 50(14 = 1, 100, 600 I-o.

C! = 1, 1A, 128, resnectivelv), y . 3(Y = 1 r., # and y . 2 for ●),

~rr.l)l(c:-l), .:*f = (c/. o)/(c D/. olQ, = (c=

than the true values. Comparing these results with the true

values CO/cO obtained by the author using the conformal

mapping [18], [19], shown in Table A-I, we find that the

errors of the results C ~/&Oare less than +0.0024 percent for

w/h = 0.01 and less than +0.001 percent for w/h >0.01. The

order of errors of C/eO for e! + 1 is the same to that of CO/eO

if we take N as follows:’

()KN-l in ~ 4<10”6,
N–1

(41)

The qWis determined by

from C/eO as follows:

&:ff — 1
qw. —

ET—1’

Wheeler [1] and can be obtained

&&ff= (c/&o)/(co/&o), (42)

Therefore, qW, shown in Table I, are possible to a sur-

prisingly high accuracy as the order of errors of C/&O is the

same to that of CO/8.. We find that the qWdepends mainly on

the shape ratio w/h and only slightly on the relative dielectric

constant e! from Table I. If we draw q ~versus (1 – l/&~), we

find that qWchanges almost linearly, the largest slope is for

w/h = about 1.2. The qW approaches 0.5 and its slope

approaches zero when w/h * O.The qWapproaches 1 and its
slope approaches zero when wjh + m. Fig. 8 shows qWfor
w/h = 0.01> 1> 100.

Table II shows the numerical results of C/&O of the

microstrips with sapphire substrate of anisotropic property.

In Table III, the ratios 2/2, of the characteristic impedance

Z of the microstrip to the intrinsic impedance ZC of the free

space (method A) are compared with those calculated by the

author using Wheeler’s formulas [1] (method B). We cal-

culated the Z/ZC of method A by using the results C o/&. and

qW in Table I as follows:

1
Zlzc = ~ , &:ff = 1 + qw(&~ – 1). (43)

.—

0.991 I

0.62
t I

+4
;;~

o 0.5 I – 1/< Lo

Fig. 8. Effective tilting fraction of the microstrip

TABLE 11
LINE CAPACITANCE PER UNIT LENGTH C/sO OF MICROSTRIP

WITH SAPPHIRE SUBSTRATE

mE* C*
lx ly

w-h
9.4 11.6 11.69.4

0.1 8.78424 CI.25962

1.0 19.6889 22.0162

10.0 105.506 127.628

IC*
2x ‘ Z!y

=1, m= 40,

/
N=50, Y=3

TABLE HI
RATIO Z/Z= OF CHARACTERISTIC IMPEDANCE OF MICROSTRIP

TO INTRINSIC IMPEDANCE OF FREE SPACE

c?

w/h 1 4 16 128

A 1.06386 0.656979 0.353413 0.127913

0’01 B 1.06388 0.657402 0.353671 0.128046

A 0.335580 0.196503 0.1o3666 0.0372929

1“00 B 0.335926 0.196998 0.103982 0.0374042

A 0,153210 0.0847546 0.0437694 0.0156338

4’00 B 0.154007 0.0844588 0.0434946 0.0155191

A 0.00958559 0.00485168 0.00243406 0.000861451

100’00 B 0.00958690 0. 004851~8 0.00243397 0.000861397

I
Method A: the method of this uauer

Method B: the modified con formal mappinsrll I

The ratios 2/2. are larger than the true values and the order

of its errors is the same to that of Co/co. Comparing both

methods, method B has a high accuracy for extremely wide

and narrow strips as having been mentioned by Wheeler [1]

and has a good accuracy for the intermediate strips. Method

A has a high accuracy as mentioned above. Its reason is that

the charge distributions can be obtained remarkably well.
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I

G G
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Fig. 9. Charge distributions obtained for the microstrlp.

As an example, we show in Fig. 9 the charge distributions

for sapphire substrates and for vacuum.

V. CAPACITANCE FOR ELECTROOPTIC LIGHT MODULATOR

The line capacitance per unit length of the electrooptic

light modulator (Fig. 5) can be calculated by a method

similar to that for the microstrip. The value of the Green’s

function, used then, at the point (h,y) on the conductor in the

upper half region is expressed as follows:

(1
2

4(n – 1)2 + *

“ in

(1

z, (44)

4(n – 1)2 + =
ctlh

Also, we express the desired unknown charge distribution

a(h,yo) on the conductor as follows:

YO – Yj
~(k,yo) = aj + (aj+ 1 — ~j ) (45)

Yj+l – Yj

TABLE IV
LINE CAPACITANCE PER UNIT LENGTH OF ELECTRCOOPTK LIGHT

MODULATOR WIrHLiNbO, AND WITHOUT

1 c
co/co‘l- D 3.30586 1.95060 1.50675 1.23313 1.01635 0.850121

c/c 0 $ c 59.0312 34.8300 26.9107 22.0372 18. ].928 15.2915

[ 2h= 2,!Jm], vi.44[~m], C;x=c;y=l, m= 40, I
N=50(N. lfor Eyx=e;y =1), y=3,

Method C, the method of this paper

Method D: the con formal mappinE
J

in order to make o(h,yo ) approach the true charge distribu-

tion, where y is a constant of 1, 2, or 3.

Table IV shows the numerical results of the line capaci-

tances per unit length C/Eo and Co /Eo of the electrooptic
light tnoclulator lines with LiNbO ~ (Et, = 43, &?Y= 28) and

without. In Table IV, method C is that of tlhis paper and

method D is that of the conformal mapping. Here, we take

that 2h = 2 mm, w = 44 ~m, and @X = CIY = 1. It is checked

with the larger m that the results obtained by method C are

greater than the true values. Comparing the results with the

true values obtained by method D, we find that the errors of

method C for c~X = e~Y= 1 are less than +0.023 percent for

2 pm s 2W0 <400 pm. The order of errors of C/&. for

LiNb03 is the same to that of Co /e. if we take N as follows:

4(N– 1)2 +
11

2(W + Wo) 2

K~-l in ulh

4(A7 – 1)2
< 10-6. (47)

Yamashita and Atsuki [17] calculated C by the variational

technique using Green’s function. Comparing their results

with our results in Table IV, for w = 44pm, we find that their

results are smaller by 4 w 10 percent.

Method C has a high accuracy because the charge

distributions can be obtained remarkably well as shown, for

example, in Fig. 10. Although not shown here, it is worth

pointing out that the charge distributions for 8YX= &tY = I

are nearly in agreement with and slightly less than those for

&~X= 43 and E~Y = 28 if both results are drawn by the same

scales to those of Fig. 10. It means that the effective relative

dielectric constant of the electrooptic light modulator with

LiNb03 is about (1 + <=)/2 ( + 17.849).

where we take that VI. CONCLUSION

/

(wo+;j-;(l-(l-s+ :-’)v~,

The Green’s function for the examples with anisotropic

media has been obtained using the image-coefficient method

based on the boundary conditions and the reciprocity

yj =
()

j=l,2, ,S S==; relation. Using this Green’s function, the line capacitances

per unit length of a microstrip and an electrooptic light

(wo+:)+:ll-(l+s+ :-jlvl

modulator have been calculated with the aid of the digital

computer, HITAC 8250 and HITAC 8800/8700. In order to

demonstrate the high accuracy of the present method, the

j=s+l, s+ 2,”””, m + 1 (46) numerical results have been compared with the true values
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APPENDIX

The line capacitance CO/&O per unit length of the micro-

strip can be found analytically by conformal mapping [18],

[19], and the results calculated by the author are shown in

Table A-I.
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